
Lab 10-1
Use the project Labs-10-1 as starter. Note that doesn’t work but it compiles without errors.

In this lab we’ll only make the functions handle_line() and handle_data() in the main program (labs-

10.c) work correctly.

 At the end of this lab all lines from ‘data.txt’ will be added to the dictionary and the user is asked for

keys to delete from the library

1) Add code to function handle_line() so that it will work correctly.

- Get familiar with the functions remove_nl_from_string(), split_on_char(), and dictionary_add().

- Note that the dictionary_... functions don’t do anything yet.

2) Add code to function handle_data() so that it will work correctly.

- Get familiar with the functions gets_s(), dictionary_find(), and dictionary_remove_by_key().

- Note that the dictionary_... functions don’t do anything yet.

int handle_line(char *string_buffer)

{

 printf("In: handle_line(\"%s\");\n", string_buffer);

 // clean string_buffer --> use remove_nl_from_string()

 // split on ':' --> use split_on_char()

 // if !ok

 // print error

 // return NO_KEY_DESCRIPTION_ERROR

 // print

 // add to dictionary --> use dictionary_add()

 // return the result of dictionary_add action

 return NO_ERROR;

}

int handle_data()

{

 printf("In: handle_data()\n");

 // loop forever --> use for(;;)

 // print messsage

 // get key --> use gets_s()

 // if empty

 // break out of loop

 // find description for key --> use dictionary_find()

 // if found

 // print descriptiom

 // remove from dictionary --> use dictionary_remove_by_key

 // else

 // print not found

 // end loop

 return NO_ERROR;

}

Lab-10-2
Use the project Labs-10-2 as starter (or the completed Labs-10-1). Note that doesn’t work but it

compiles without errors.

In this lab we’ll add basic functionality to the dictionary

At the end of this lab we’ll be able to add, find, and remove items to/from the dictionary, we’ll also

able to show the complete dictionary.

Note that we’ll add functionality to all functions in the dictionary.c .

1) Add an array of DictionaryItem’s and a dictionary_counter to the dictionaries global

variables.

1) Add code to the function dictionary_find_index_by_key() so that it returns the index of the

found key or -1 when the key was not found

- Loop through all items in the array until the key was found

- When found, return the index of the found item, otherwise return -1

2) Add code to the dictionary_add() function so that it will add a key/description pair to the

array.

- Remove the UNUSED_PARAM() lines in the dictionary_add() function

- Get familiar with the function strcpy_s() and strcmp()

- Check if the dictionary already contains the key, if so return an
DICTIONARY_DUPLICATE_KEY_ERROR.

- Check if the array has a free element to add the new key/description pair, if not return

DICTIONARY_FULL_ERROR;

- Add the key/description to the array and increment the counter

- Return the position of the newly added pair to the caller

3) Add code to the dictionary_find() functions so that it will return the description of a found item

- Loop through all items to find the given key, when found return it’s description, otherwise return a
NULL

4) Add code to the dictionary_remove_by_key() to find and remove a pair from the array

- Find the index of key in the array, when not found return -1

int dictionary_count = 0;

DictionaryItem dictionary[MAX_DICTIONARY_SIZE];

- When found, move all items with a higher index one step down in the array and

decrement the counter

5) Implement the dictionary_print_all() function
- Print all items in the array using the printf() function like:

6) Implement the dictionary_clean() function so that it resets the number of items in the array

7) implement the dictionary_get_count() function so that it returns the number of items in the array

8) try the program to see if it works completely

9) Add one or more lines to data.txt and test it again (it should break now)

Lab-10-3
Use the project Labs-10-3 as starter (or the completed Labs-10-2). Note that work’s.

In this lab we’ll change the basic functionality of the dictionary so that it will dynamically use

memory on the heap.

At the end of this lab we’ll be able to add ‘unlimited’ items to the dictionary and memory will be

free-ed nicely when we remove items from the dictionary and on exit.

Get familiar with the functions malloc, realloc(), free(), and _strdup().

1) Include “malloc.h” at the top of dictionary.c

2) Remove the defines

3) Change the dictionary struct so that it will not use a fixed amount of bytes for the key and

description anymore

printf("- %2i: %-20s --> %s\n",

 index,

 dictionary[index].key,

 dictionary[index].description);

#include <malloc.h>

#define MAX_DICTIONARY_SIZE 5

#define MAX_KEY_SIZE 20

#define MAX_DESCRIPTION_SIZE 100

typedef struct {

 char *key;

 char *description;

} DictionaryItem, *pDictionaryItem;

4) Change the dictionary so that it can be allocated on the heap

5) Change the dictionary_add() function so that it will realloc the dictionary and allocate

memory for the new key and description

- to realloc the array use a size of (count+1) * sizeof(DictionaryItem)

- use _strdup() to copy the key and description

6) Modify the function dictionary_remove_by_key() so that it will free the memory that was

allocated for the key and description

- Search for the DictionaryItem in the array

- Free the key and description

- Copy the elements above the free-ed item one step down in the array

7) Add code to the function dictionary_clean() so that it will free all allocated memory

- first free all remaining keys and descriptions;

- then free the array itself;

- set the dictionary variable to NULL;

- make sure that the dictionary_count is equal to 0.

8) try the program to see if it works completely

9) Add one or more lines to data.txt and test it again (it should NOT break anymore)

Lab-10-4
Use the project Labs-10-4 as starter (or the completed Labs-10-3).

In this lab we’ll:

- use a command line parameter to specify the datafile to be read.

- sort the dictionary and search for keys using a binary search.

- Add new items to the dictionary

- Save the dictionary when changed

1) Change the program so that it will use a command line parameter for the datafile to be read

Open the projects properties, go to the debugging options and set the Command Arguments to

“Data.txt”.

Make sure that the working directory is “$(ProjectDir)” .

DictionaryItem* dictionary = NULL;

Tip: Use argv[1] in the program if not NULL

2) Add a function dictionary_sort() to the dictionary.h and dictionary.c file and implement a

bubble sort on the key to make it sort (from ‘a’ to ‘zzzz’);

Tip: google on “bubble sort C” or just read:

https://www.thecrazyprogrammer.com/2013/04/c-program-to-sort-array-by-using-bubble-

2.html

Run the program to check if the sort is forwards now.

3) Change the function dictionary_find() so that it uses a binary search

Tip: google on “binary search C” or just read:

https://www.thecrazyprogrammer.com/2017/11/binary-search-c.html

4) Change the function handle_data() so that it will search for an item, show it when found, or

add it to the dictionary (including a description) when not found.

5) Optional: Change the program so that it will save the dictionary (when modified).

- Add the functions dictionary_key_at(int index) and dictionary_description_at(int index)

to the dictionary.c and dictionary.h files and implement them.

- In the main program create a new function write_data(char* filename) that saves all

lines in the dictionary

int write_data(char *file_name)

{

 FILE *stream;

 printf("Opening file: \"%s\" for write\n", file_name);

 int err = fopen_s(&stream, file_name, "w");

 for(int index = 0; index < dictionary_get_count(); index++)

 {

 fputs(dictionary_key_at(index), stream);

 fputs(":", stream);

 fputs(dictionary_description_at(index), stream);

 fputs("\n", stream);

 }

 printf("Closing \"%s\"\n\n", file_name);

 fclose(stream);

}

https://www.thecrazyprogrammer.com/2013/04/c-program-to-sort-array-by-using-bubble-2.html
https://www.thecrazyprogrammer.com/2013/04/c-program-to-sort-array-by-using-bubble-2.html
https://www.thecrazyprogrammer.com/2017/11/binary-search-c.html

- Call the function write_data() in the main program (when the data was changed).

-

